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Abstract-This paper presents a computer based method for the efficient formulation and solution
of the nonlinear equations of motion for mechanical systems which are modeled as systems of
interconnected flexible bodies and are subject to motion and/or geometric constraints. Flexibility is
modeled through the use of admissible functions obtained from previous finite element analysis of
the component bodies. The procedure then forms the equations of motion and solves for the system
state derivatives associated with the unconstrained system in a highly efficient, order n manner. The
constraint loads required to enforce the constraint relations are subsequently determined through
the use of a constraint stabilization method. The required constraint loads are then used to modify
the state derivatives found previously, resulting in a set of state derivative values which are now
associated with the constrained system, The procedure is efficient and produces simulation computer
code which is highly parallel in form and lends itself well to application on parallel computers,

1. INTRODUCTION

Driven by the needs of the aerospace, robotics and machine design industries, the last three
decades have seen great advances in areas of dynamic simulation and analysis. In the area
of robotics, the modeling of high performance robotic manipulators as systems of rigid
bodies is often insufficient. Joint compliance and structural flexibility of the component
parts must also be considered for adequate dynamic simulation and analysis. In the area
of spacecraft design, many proposed structures are large and limber. Due to their size,
development and verification testing of these structures in the laboratory is, and will likely
continue to be, impractical if not impossible. Even if such tests could be made, results
obtained in the earth's gravity and air environment could well be misleading or inconclusive
regarding the structure's in-orbit behavior. For these reasons, analytic modeling and simul­
ation are essential tools in large space system design.

For analytical modeling and computer simulation to be effective tools, they must be
both fast and economical. The design process may require many simulations, and may
thus be limited by time and/or monetary constraints. Much work has been done in the
development ofsimulation procedures which are sufficiently general to handle a wide variety
of multibody systems. However, the computational cost associated with many of these
methods is considerable, thus limiting the extent to which they may be applied. As a result
emphasis must also be placed on developing algorithms and simulation programs which
are computationally efficient/economical, while remaining general enough to adequately
simulate a wide variety of systems. Presented in this paper is one such approach, based on
a highly efficient Order n, O(n), algorithm for dealing with multibody dynamic systems,
which considers geometric stiffening (too often neglected in many formulations) and allows
for the presence of closed loops with any or all of the bodies of the system being flexible.

Earlier models of multibody systems, using finite element or assumed mode methods,
were based on the assumption that small deformations of the bodies do not affect the
nominal rigid body motion significantly (Imam and Sandor, 1975; Bahat and Willmert,
1976; Sunada and Dubowsky, 1981). In their analysis the inertial and reaction forces were
evaluated from rigid motion of the component bodies of the system and introduced to the
linear elastic problem as external forces for computing the corresponding deflections. The
elastic deformation however does not yield accurate results for situations in which the
dynamic coupling of the rigid and flexible motion is significant.
$AS 30:7-0
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Analysis procedures developed by Agrawal and Shabana (1985), as well as Yoo and
Haug (1986), involve formulation of the equations of motion of each elastic body in terms
of its absolute rigid body and flexible degrees offreedom. The rigid body motion and elastic
deformations are then solved for simultaneously. However, the interactions of the bodies
are described by a large set of constraint equations formulated for each type of joint. This
procedure can increase the dimension of the problem considerably and the introduction of
Lagrange multipliers associated with constraint forces from the equations ofmotion requires
costly computations for updated transformations.

Singh et al. (1984) used a formulation based on "Kane's Method" as found in Kane
and Levinson (1980). This approach incorporated flexibility through assumed mode shapes
obtained from previous finite element analysis of each body. This approach had some
recursive aspects, but yielded equations of motion which were highly coupled in the gener­
alized coordinates. The approach was limited to clamped-free mode shapes and the analysis
of open tree configurations. More recently, work done by Bae and Haug (l986a, 1987b),
Kim and Haug (1988, 1989), Wehage (1988) and VanderVoort (1988) has placed much
greater emphasis on computational speed, efficiency and the use of parallel processing.

However, with many of these procedures which achieve model reduction through the
use of modal coordinates, the derivation underlying them contains terms which have
been prematurely linearized in the modal coordinates. This can lead to grossly incorrect
simulations as shown by Kane et al. (1987). When corrective terms are added to account
for the premature linearization of expressions, correct dynamic behavior of the system is
predicted (Banerjee and Dickens, 1990; Wallrapp and Schwertassek, 1991).

Amirouche and Ider (1989) presented an approach utilizing relative coordinates for
rigid-body degrees of freedom and assumed mode shapes which is also based on Kane's
formulation. The approach is O(n 3

) and is applicable to both tree and closed loop con­
figurations. The paper discusses the need for producing geometric stiffening terms to correct
for the premature linearization in the modal terms and presents a method for generating
these corrective terms when dealing with beams.

An alternate approach is presented in this paper. The recursive method uses relative
coordinates for rigid body displacements, and shape functions obtained from finite element
analysis for the representation of elastic body flexibility. In addition, geometric stiffening
corrective terms can be determined for all flexible bodies. The resulting procedure is efficient,
can be applied to both tree and closed loop configurations, and lends itselfwell to application
on loosely coupled distributed architecture parallel computers.

2. ANALYTICAL DEVELOPMENT

2.1. Notation and geometry
Throughout this paper, scalar quantities will be represented as italics. Vector quantities

will be denoted by bold symbols, while matrices are shown as italics with an underbar.
Dyadics are represented by bold faced symbols with an under tilde, while matrices composed
ofeither vector or dyadic quantities are represented by bold faced symbols with an underbar.
For example, the symbols A, A, A, ~ and A, represent a scalar, vector, matrix, dyadic and
matrix of vector or dyadic quantities, respectively. Unless stated otherwise, a variable in
the subscript preceded by a comma indicates differentiation with respect to that variable,
and summations are carried out over repeated indices, with indices I, m, 0, p = 1,2,3;

B
k d' Jk hfh B

k d Jk hq=I, ... ,21;r,s,t=I, ... ,jl ;an J=I, ... ,jl . Foreac 0 t ese,jl an jl aret e
number of flexible degrees of freedom associated with body B\ and the number of rigid
body degrees of freedom associated with the kth joint, Jk.

Consider a multibody system consisting of JV rigid and flexible bodies as depicted by
Fig. I. The bodies of the system are interconnected by joints allowing from one to six
degrees of freedom. The system may be a tree configuration or may contain one or more
closed loops. If closed loops exist in the system, the bodies of the loop are numbered as
though the system were in a tree configuration with the associated loop being cut at a joint
selected by the analyst.
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Fig. I. Generic multibody system.
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The algorithm to be presented assumes the following rules are obeyed in numbering
the bodies: (i) every body has a higher number than its proximal body; (ii) consecutive
integers are used in the numbering of bodies, but adjacent bodies need not have consecutive
numbers.

Once the identification number for each body in the system has been properly assigned,
the topology of the system is uniquely defined by identification numbers of the proximal
bodies. The notation Pr[k] refers to the set containing only the proximal body of the nk

•

Pr is called the proximal body array and the convention that

Pr[k] = 0, if k is a base body (I)

is used where bodies 0 and N are synonymous labels for the inertial reference frame.
It is useful to introduce additional sets to characterize other aspects of the system's

topology. The notation An[k] refers to a set of body identification numbers defined as

An[k] ~ Ulnumbers of all bodies lying between body k and body O} (2)

and is called the ancestor body set array.
The notation Dist[k] refers to a set of body numbers defined as

Dist[k] ~ UIPrU] = k}. (3)

Dist is called the distal body set array. A body k for which Dist[k] = 0 is called a terminal
body of the system. The notation Des[k] refers to a set of body identification numbers
defined as

Des[k] £ U (U} u DesUD
jeDist[kl

= Ulall bodies which are outboard of body k}.

Des is called the descendent body set array.

(4)
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The description ofsystem topology given by Pr, An, Dis! and Des is redundant because,
given anyone of these arrays, one can construct the remaining three.

A typical flexible body of the system is defined as a body Bk which undergoes relative
rigid body motion with respect to its proximal body BPr[kj and deforms elastically (Fig. 2):
Let nk,o be the reference frame of Bk with respect to which the deformation of the body is
given. Reference frame nk,l represents the frame within which the dextral mutually per­
pendicular unit vectors n~,I, n~,I, n~·1 are fixed and which is itself fixed with respect to point
pk,l, the ith grid point of the finite element representation of B k. The point for which i = Jk,
is that point of B k which connects B k to BPrlkl through joint Jk.

The position of an arbitrary pk.1 of B k with respect to pk.lk is given by the position
vector

(5)

where rk,1 is the position vector of pk,l in undeformed B k and t{Jk,1 is the admissible shape
function matrix associated with the translation of pk,l. The bodY B k has p.B

k
modal defor­

mation coordinates associated with it, where q:' is the sth coordinate, Similarly, qt' rep­
resents the sth of p.l· generalized coordinates associated with rigid body degrees of freedom
arising from joint Jk.

For ease of notation, define the position vector from pk,lk to point pk,1 in the undeformed
state as Pk I' Similarly, let q,k.1 represent the modal deformation matrix at pk,l with respect
to pk,l·. '

Namely,

(6)

and

(7)

Similarly, the angular position of a particle at pk,1 with respect to pl', (/,1, arising from
the deformation of Bk , is expressed in terms of modal coordinates, q:', and rotational

----- .......
............~k,i "

" - (Deformed) '\.

BtDeformed), ,," \

// ~

( J
/) /

-' /" -"/ -/
I

P!'.,J' I
(Deformed)~

~
"- ......

\
\

Fig. 2. Labeling convention for deformable bodies.
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deformation shape functions. If l/J~,i is defined to be the rotational shape function associated
with qt at pk,i with respect to pJk

, then (j<.i is given by

(8)

Finally, unless otherwise specified, all time differentiations are taken in the inertia
frame.

2.2. Mathematical preliminaries
To reduce the large number of elastic coordinates, a standard component mode tech­

nique as presented by Craig and Bampton (1968) will be utilized. This approach involves
using a relatively small number of mode shapes for each elastic body. The mode shapes
used for each body consist of selected free-vibration free-free modes, all constraint modes
and any necessary static correction modes. The free vibration modes being extracted from
the eigenvalue problem:

(9)

Where J(k and ::f{'k are the structural mass and stiffness matrices obtained for Bk and /}k is
the total number ofdynamic degrees of freedom associated with the full discretized flexible
model of Bk

• The approximate solution for eqn (9) is

_.1< ,J..k Bk ( ok Bk)
Xs ~'I'slql s= I, ... ,.,.; t= I, ... ,p , (10)

where fjJk is the matrix of eigenvectors (mode shapes) associated with Bk, qt are the modal
coordinates, and pBk is the number of eigenvectors retained.

The free vibration modes selected (retained) are those modes which are anticipated to
have the most significant modal contribution. The static corrections modes are shape
functions associated with the application of a unit load at points of the body (with a
clamped interface) where an extemalload, such as an actuator force, will be applied.

Partial velocities. Central to this approach is the use of partial angular velocities and
partial velocities (Kane and Levinson, 1985). If we define wP and vP to be, respectively, the
angular velocity and velocity ofan arbitrary particle P ofthe system with respect to reference
frame N, then wP and vP can be expressed as

and

n

(JJP = '"' wPu +wP
L.J r r t
,= 1

n
P ,",P+Pv = L... v, U, VI'

,= 1

(11)

(12)

where, by definition,

U 1, •.• , Un are generalized speeds, quantities which characterize the motion ofthe system,
w; is the rth partial angular velocity of P in N,
v; is the rth partial velocity of P in N.

Differentiating eqns (11) and (12) with respect to time yields

and

NdwP n ( n )P p..p.p
IX = -d- = L w,u,+ L w,u,+w I

t ,= 1 ,= 1
(13)
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(14)

for the angular acceleration of Pin N, and the acceleration of Pin N, respectively.
The quantities i P

, ".P, iiP and i P are then defined to be

n

i P
~ L w;u"

r= I

n

IJP:f! " • P +' P"" L. W r Ur W t ,
r= I

n

a- P A " VPU- L. r "
r= I

n

a~P J:.. " yPU +yP-L,.;rr t,
r= I

(15)

(16)

(17)

(18)

which will aid in the development and representation of recursive relationships discussed
in the next section.

2.3. Unconstrained systems
Through the extensive use of recursive relationships, the state derivative values can be

determined for general tree system in approximately O(n) operations overall. The algorithm
consists of three primary computational steps: (i) working from the base body outward
toward the terminal bodies of the system, recursively determine kinematical quantities,
specifically the angular velocities, velocities and acceleration remainder terms; (ii) working
recursively inward from the terminal bodies to the base body, generate generalized active
forces, the remainder term contribution to the generalized inertia forces, composite inertia
values and triangularization of the resulting equations; (iii) recursively back substitute to
generate state derivatives, ut. .. .,Un'

(i) Determination of kinematical quantities. Some choices of generalized coordinates
lend themselves much better to the production of recursive relationships than do others.
The set of generalized coordinates which has shown itself to be best for the generation of
recursive relationships consists of those coordinates which describe the relative orien·
tation/position of adjacent bodies (Jain, 1989).

The mathematical model is constructed such that the joints between adjacent bodies
are comprised ofa series ofproperly oriented single degree offreedom revolute or prismatic
"subjoints" connected via massless/dimensionless links. Thus, if joint Jk is a six degree of
freedom free joint, then it would be described by the set ofsingle degree offreedom subjoints
J~, ... ,Jt. The value of each generalized coordinate associated with rigid body motion
describes the placement of the subjoint/body with respect to its proximal subjoint/body.
When joint Jj is revolute, the generalized coordinate qt represents the angle between sub·
bodies Jj and Jj_ h with a joint axis parallel to unit vector ;/J. Ifjoint Jj is prismatic, then
qj* is the translation of sub-body Jj measured relative to subjoint Jj_ I in the direction of
unit vector ;/1.

The generalized speeds, U I, ..• , Un used in this formulation are defined as

(19)

With generalized coordinates and generalized speeds so defined, the following recursive
kinematical relationships for angular velocity, velocity, partial angular velocity and partial
velocity hold true:
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Ok ' Ok Jk .1)1;' Ok
W ,J = W ' +.,,;'US ,

{
Jk~Jk I'f Jk' I

k k Uj A J j IS revo ute,
W

Jj =WJj-1 + 0 l'f JJ is prismatic.

Similarly,

Ok' OkJk OkJk k' "' OkV ,J = V ' +w ' x e,J +4/J;,Jus ,

J k Jk JkJk Jk. k'

{
w j X Y j +u, A j x Y j If J}, IS revolute,

Jk Jk }

V j = v j- I + uJJAJJ if J7 is prismatic,

with Y7 representing the position vector from J7- I to J7.
For i and i we have

and

_Jk -Jk _Jk Jk 1Jk .Jka1 =aj-l+atJ"xYj-I+A1Uj'

Similarly, for the angular acceleration remainder terms

Ank I AOk Jk Ok Jk '.' Ok
01: ' =01: ' +W ' xt/l;"us ,

and for i
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(20)

(21)

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

AJk AJk AJk Jk Jk (Jk Jk)a j = a j-I + 01: j- I x')' j +W j-I X W j-I X Y j-l

(31)

In all relations, the superscript "Ji" and "J~", are synonymous with the superscripts
"BPr[kj,Jk" and",Jk ", respectively.

Geometric stiffening. Linear strain energy theory assumes that the deformation com­
ponents are independent. But in systems involving high rotation rates, high radial forces
can occur and the coupling between radial and transverse deflections becomes significant.
Unfortunately, the use ofmodal coordinates in modeling flexibility often results in equations
of motion which are incorrectly linearized with respect to these coordinates. For this reason
higher order strain energy terms need to be considered. These terms are used in the
generation of geometric stiffness expressions which are added to the existing equations to
correct for the premature linearization in the modal terms. The procedure used in this paper
for the determination of geometric stiffening terms is that of Banerjee and Dickens (1990).
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However, additions and modifications have been made to allow for multiple interconnected
flexible bodies, and to make this procedure compatible with the O(n) formulation.

As given by Banerjee and Dickens (1990), the element geometric stiffness is

(32)

where !i(x, y, z) is the (3 x e-ndof) matrix of interpolation functions, with x, y, z as local
coordinates. The stresses (JijO (i, j = x, y, z) are those arising from the loads applied to the
nodes of the element, the quantity e-ndof represents the number of element degrees-of­
freedom, and Q is a (3 x 3) identity matrix.

As discussed in Banerjee and Dickens (1990), finite element codes, such as
NASTRAN, can compute the geometric stiffness associated with a prescribed distributed
load by first calculating the associated element stresses. These element stresses are then used
in the determination of the element geometric stiffness matrices as per eqn (32). Finally,
the element geometric stiffness matrices are assembled into the body geometric stiffness
matrix Kg

k
• Much of the necessary NASTRAN DMAP is available in the buckling analysis

rigid formats and can be applied here with relatively little modification.
The overall geometric stiffness matrix for Bk

, Kg
k

, is constructed from 21 time invariant

contributing matrices, Kt (q = I, ... ,21), and their associated temporal scalars, At, which
q q

arise from the inertia loads in B k
• In addition, there are another six contributing time

invariant matrices, k~;h (jEDist[k]; h = 1, ... ,6), and their associated temporal scalars,

F£{, which are affiliated with each distal body to Bk, and account for the geometric stiffening
in B k due to loads applied to it by each of these distal bodies. Specifically,

Kgk=Kg;(Ag;+Ag;)+ L kgj:Ft~ (q=I, ... ,21;jEDist[k];h=I, ... ,6), (33)
- jEDis/[k]--

where Agk
, and F J

{, with their associated prescribed grid point loads for the generation of
q

Kt and kt, respectively, given in Table 1.
-q ~

(ii) Determination ofgeneralized forces and triangularization of equations. In general,
for systems of .K interconnected bodies, the equations of motion are given by Kane et al.
(1983), as

(34)

The integration over the volume of each body and the indicated summations over all
bodies of the system at each time step can be computationally expensive and the resulting
equations of motion are highly coupled in the state derivatives. Consequently, the equations
of motion must be triangularized and the state derivatives solved for, before the equations
of motion can be temporally integrated.

Key to the reduction in the number ofrequired operations is the removal ofsummations
which appear above. The indicated summations over all bodies of the system can be reduced
significantly through the use of relative coordinates for rigid body motion. Making full use
of the recursive relations presented previously, the equation of motion can be rewritten as

L [v~'RkdVk+ L [~'Rk·dVk=O (r=I, ... ,N), (35)
kE Des[l] u {I} Jvk kE Des[l] u {I} Jvk

where I is the body or joint to which degree of freedom r is associated.
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Table I. Loadings for the generation of the geometric stiffness matrix
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Temporal scalars Load applied to grid i

Applied force

ms""n(r

ms"·'n~'·r

mB'.in(-r

(Pr.inf,r _ p(-intr)ms"·,

(P~'.inf'.r _ p('n(-r)ms",i

(pf'.inr.r - pr·in(r)mB'.,

(- p~'.intr - pf-'nf.r)mB'.i

(P~'.inf'·r +p(in~'·r)ms"·'

(Pf.inf'.r + p(in(-r)ms"·,

(- pf"'n(r - p('nf.r)ms"·'

(Pr"nf,r + p~'.inr,r)mB'./

(- p(inf',r - pt/nr.r)ms"·i
nf"-r (l = I, 2, 3)

Applied moment

1(.·inf'·J' + I~,in~'·r + I~~·inf.r

I("in(r +/~~'/n~',r+l~'/n(-r

I~:·inf'·r+/~~,intr+/~·lnf.r

- If~·in~'·r +I~'/n(-r

1~"nf',J' - 1~~·lntr + (/~I - If:·I)nf·r

- I~"n(r+ (/(.,1 _ I~~'/)nr.r _ I~~,in(-r

If/n(r -/f~·ln(r
(/~~,i_ 1~~.I)nf',J' _ I~,in~'·r _ I~·in(-r

- I~~·inf',r + If~·inf,r

ntr(l= 1,2,3)

A!',J' = Atr +A{r (j = 1, ... ,21)

of'·r = iB'.r .ntr tif".r = iB',r .nf"-J' (I = I, 2, 3)

lif'·.r' = ii,B',r .nf"-J' a.t.r' = jB'..r' .ntJ' (l = 1,2,3)

This procedure is still computationally expensive in formulating the equations of
motion for all but the terminal bodies of the system and does not avoid the expense of
solution for the state derivatives.

The indicated summation can be eliminated entirely through the recursive shifting of
active and inertia forces to their proximal bodies. The state derivatives can then be deter­
mined inexpensively through the recursive triangularization of the resulting equations
(Rosenthal, 1990; Anderson, 1990, 1991). The arguments of the integrals may be split into
spatial and temporal parts, with the indicated spatial integrations needing to be carried out
only once. The temporal quantities are then multiplied by time invariant coefficients result­
ing from the spatial integration.

If of, o~ and o~ form a dextral set of mutually perpendicular unit vectors fixed with
respect to P, then the mass and central inertia dyadics of P, ~P and r, are defined as

(36)

where M P is the mass lumped at P, and
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If pP is written as

K. S. ANDERSON

t ~ Ifmnfn::.. (37)

then we define the dyadic pPx as
""

PPx 1l. pPnPnP+pPnPnP+pPnPnP pPnPnP",,--312213321-123

and let y be the unit dyadic given by

(38)

(39)

(40)

For notational ease ~~,i, ~:;, oF I, IF I, d and ff are introduced as

{jJJj ~ [coff] cf)k.1 ~ [tfI:. l
] d Ihk I 1l. [lhk i Ihk,l ]

_' Jk' _' .l..k,t an -' - -I,···, - a' ,V,J '1', - - -I'
(41)

(42)

[

k ' Bk. Ok, Ok' Bk ' Bk ']
k' - I .t -Ii .t -co .' x I .' -co .' +T .'

/FB.,1l. - -
I - Bk, 'Ok. Ok '- -lY' "'a "+R ,t

and

(44)

(45)

The terms T P and RP appearing in eqn (43) are the torque and force which line of action
passes through P, and which together are equivalent to the set of all distance, contact and
elastic forces (except those arising from geometric stiffness) acting on P.

In addition, from the corrective term matrix, ytg" of forces/torques which arise due to
geometric stiffness and given by --

(46)

through matrix manipulation (Appendix), one can construct

+ L !f7.' , [.;r~j, ' .i/Jj, +IF~j, + ({jJ;~ , IFA){jJ~5,J)qt, (47)
jEDIst[k]

where the vector quantities Ttl and Rt' are the torque/force pair which acts on grid i of
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Bk due to geometric stiffness; yB*,1 and fBk,i are matrices of dyadic quantities associated
with the geometric stiffness due to body Bk inertia loads and loads due to distal bodies,
respectively; and :FJ~ = rrJ\ RJ~]T.

Starting from the terminal bodies and working inward, the composite inertia values as
well as the active force and inertia remainder term portions of the inertia forces are
determined for the triangularized equations by recursively using the relationships

(48)

(49)

(50)

* k ... ( k· k· k· k· k' . k k· . kJf ,J g ~ ffB "'Jf ,I. (ffB ,')T +(ffB "'Jf ".~:,,).~ +ffB"'!:""'q!

+ L [ffBk'i.!~j'iq:"'·Jt.J{·(ffBk,j+~,j.g,:k)]), (51)
jeDist[k]

and

+ L [ffBk,i. !~j,l~k. (:F{~ +J{~' ~,jdt)]), (52)
jeDist[k)

with

and

(54)

where

and
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B' [B' ,..B']T ~ ( B') -l(B' (B'I = 11"",5..8' -.,/I I"", l·- - -Ii -Ii
(56)

!.:' ~ [~(~k.i)T'$f*'I'(9"Ok,if+(~~'i)T.!t'l)qfk

+ L: ([f(~~'lf·!fJ'iJqt·$~k,JJ,'(9"BkJ)T)J. (57)
jeDlS/[k] I

Equations (51)-(57) contain summations of quantities associated with all grid points
used in the finite element discretization of Bk

• The spatial summation (integration) is
only performed once, producing time invariant coefficients to the temporal quantities
(Appendix), Substituting the time invariant coefficients and associated temporal quantities
into these equations yields

Jt.Ok ~ C II,k + " [(ellk'f+ [G;;Bi])TqOk •$JJ, •ellOk'f]
r8 rs i..J _' G2Bk t _3 _3 ,

jeDiSl[k] ,i )

.Bk = CI,k,.JJk _ {C2,kaABk,Jk+ [C3,k+C4.kqBk]~Ok,Jkc:r ,s 'Is ,1 I ,1 ,sl s ....1

and

[
C 31

'k +C32'kqOk] [G4'BJ](Ok_' ,s S + rl ,.JJk
_, - C 33,k G 5,Bj 'It

, rl

Defining intermediate terms XI,Bk, .. , , X7•Bk and tlj I,Bk, ... , tlj8,Bkas

xl,Ok ~ [C]/.k + C]t~,IcU:k]etk - {[Cl,:,k + C]I;«c/fk]a~k,Jk

+ [Cl,;:,k + (C1;:/+ C11~k + C1//:qt)(lt]~·,Jk

+ [C 20,k + (C21,k +C22,k qB')qOk]WOk,JkWBk,J'
lmn a/mn srlmn t s m n

+ [C 23,k +2(C 17,k +C 19,1c ...II')]WB',JktIlk+C 24.ktll·tIlk}
31m 81m Slim qt m s stl s t ,

xl,Ok = CJ5,kq~k - {C 2Mi!',Jk + [CI;,;,k + CJ~kqtJ~k,Jk

+ [Cl:/ + C~~:c/f'JW~k,J'W:k,J' +2C1J~kU~'W~',Jk},

"13,0' = C 31 ,k+C32,k,.JJ'
Alrl rl rsJ '1s ,

5Ok C34,1c [C35,1c C36,1c ,.JJkJ,.JJk
XI';' = 1m + slm + stlm'1t 'Is,

X
6,Ok _ C37,k +C 38,kqO'
1m-1m sims'

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)
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...,7,Bk
_ C 39,k+C40,k..Jjk

Mm - 1m .Im 'i. ,

and

~Lll,B; _ G6.B;+G"Bj..JJk
;y 11m - tim .tlm fl. ,

rJQZ,BJ _ G8,BJ+G9.Bj..JJk
"iYtlm - tim .tlm fl. ,

"63,B; _ G 10,B}
tim - 11m ,

~Ll4,.Bj _ G II,B;
;Ytlm - tim ,

~Ll5,B; _ G I Z,B} +G I 3,B; ..JJk
"'tim - 11m stirn fl. ,

r86,8j _ G 14,8j+G 15•.Bj...,Bk
"'tlm - tim 0 .tlm '1. ,

~87.B} _ GI6,BJ
;Ytlm - tim ,

r88,Bj _ G 17,aj
'7tlm - tim ,

~89Bk G 18ak G l9ak ..Jjk
"":Ystl = st/' + rsti ':ir ,

"6 lo•ak _ G zO,ak
stl - sIt ,
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(61)

(68)

(69)

(10)

(11)

(12)

(73)

(74)

(75)

(16)

(77)

For the rigid body degrees of freedom the expressions for J~k and ,t are

(79)

(81)

The process is repeated, working recursively inward, to the lowest rigid body degree
offreedom of the base body, at which time it is possible to write
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(~J:)T .~~l
zI.' _ -JI -

I - - (~Ji)T ."Ji .~J:'
-Ji _2 -Ji

(82)

providing the value of Ii{ I in terms of known quantities.

(iii) Recursive back-substitution. This known value for Ii{' is used to start the back­
substitution process for the determination of the remaining generalized speed derivatives.
The recursive relationships used here are

(83)

and

(84)

for rigid body degrees of freedom, and

(85)

and

(86)

for flexible body degrees of freedom. uf' is substituted into eqn (83) for the determination
of d J1 , which is in turn used in eqn (84) for the determination of ~I. This process is
repeated, working recursively outward to determine the remaining joint accelerations by
the appropriate application of eqns (83) and (84), and the state derivatives associated with
the flexible degrees of freedom by use of eqns (85) and(86). The end result is that the rigid
body degrees of freedom are uncoupled and the relative joint accelerations, itfk
(k = I, ... , % andj = I, ... , ifk) are determined in 0(%) operations overall for a general
tree structure. The state derivatives associated with the flexible degrees of freedom, u:k

(k = I, ... , % and s = I, ... , JlBk) are only coupled through the flexible degrees of freedom
associated with Bk

. This coupling manifests itself in JlB
k

in eqn (53). However, because the
number of flexible degrees of freedom associated with a single body of a larger multibody
system is often small in a global sense, the computational effort associated with the for­
mation and inversion of these matrices is generally not the dominant factor in overall
computational cost.

2.4. Constrained systems
The dynamical equations presented so far apply only to tree configurations which are

not subject to either motion or configuration constraints. If a system has one or more
constraints on its geometry or motion, then additional equations must be satisfied.

Consider an unconstrained multibody dynamical system possessing n degrees of
freedom. The motion of the system is fully specified by the generalized speeds, u I, ... , Un,

which are independent of each other. If the system is subjected to m conditions of the form

4>/(q, t) = 0 and 4>/(q, q, t) =0 (i = I, ... , m) (87)

for holonomic and nonholonomic constraints, respectively, then the motion of the system
in a Newtonian reference frame is characterized by n generalized speeds u I, ... ,Un which
are not independent of each other, but must satisfy m simple nonholonomic constraints, or
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holonomic constraints differentiated once with respect to time. Such constraint equations
are of the form

n

L Arsur+Bs = 0 (s = l, ... ,m),
r= I

(88)

where A rs and Bs are explicit functions of q I, ... ,qn and time t. As a consequence of the
imposition of these constraints, the number of degrees of freedom of the system reduces
from n to p ~ n-m.

The procedure presented here for the formulation of the equations of motion for
systems subject to constraints is a variation on that presented by Park and Chiou (1988)
and Park et al. (1989), and applied to an O(n) approach in Anderson (1990).

To illustrate the procedure, the case of nonholonomic constraints will be considered.
As an initial estimate of the generalized constraint forces, 1, required to enforce the
constraint conditions, the generalized constraint forces are approximated as being pro­
portional to the error in (88) and are given by

IJ: = -(Au+B),- e -- - (89)

where e is a constant chosen by the analyst. This expression is, in turn, differentiated once
with respect to time, yielding

. I ..
A. = -(Ati+Au+B).- e -- -- - (90)

From the preceding discussion of unconstrained systems, it can be shown that the
equations of motion for the constrained system can be written in the form

subject to the constraints

Au+Au+B= O.

Solving (91) for ~ and substituting this into (90) yields

(91)

(92)

(93)

The solution of this ordinary differential equation in fc decays to the constraint load
measure number values. When constraints are present, the procedure follows much the
same course as the basic algorithm presented in the previous section, but now the presence
of the unknown constraint force measure numbers in the equations of motion must be
considered. For instance, in Fig. 3(a), body 3 closes the loop in the system through its
connection with body 8. This algorithm, like most others, requires that the system be a tree
structure. This necessitates that closed loops be cut at the joints connecting appropriate
bodies so that the required open loop structure is produced, Fig. 3(b). The constraint
conditions which insure closure of the loops are then enforced through the addition of
constraint forces and moments ofproper magnitude and direction, applied at the connection
points. In general, neither the magnitudes nor the direction of these constraint forces and
moments are constant, which necessitates expressing these loads as the vector sum of their
components in some meaningful basis, say one fixed in the Newtonian frame N. In the basic
algorithm, the set of all distance and contact forces acting on pk,i are given by the reaction
RB',i and torque T B

'';. The presence of the generalized constraint forces fc , ... ,fc now
1 m
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(A) CLOSED LOOP SYSTEM

(B) CORRESPONDING OPEN LOOP SYSTEM

Fig. 3. Tree systems associated with closed loop systems.

applied to enforce the m scalar constraint conditions should be included in these quantities.
However, all forces and moments acting on Bk, except for the generalized constraint force,
are known. So, it is highly desirable to keep the unknown generalized constraint forces and
the known applied forces segregated. To this end, the resultant applied forces and torques
are given by

respectively, from which we define

[
T Bkh

]

Bk.h A c'

f1'c, - Rt,h '

where h is the point of Bk through which a constraint is applied.
Defining the quantities d:k

, f1' ::,Jk and f1' :t- I as

( [
G I,BJJT ))+ L rt Bk • f1' Bk,J{,

jeDist[k] G;iBj qt __c,_ '

(94)

(95)

(96)
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the state derivatives for the constrained system are given by

and

Expressing ~ as

(97)

(98)

(99)

(100)

(101)

where' is that portion of uwhich is explicit in the constraint load measure numbers and '7
is all elSe, '7 is simply equal to ufor the identical system when no constraints are imposed
and is given by eqns (83)-(85f In a similar manner, the elements of ~ are given by the
relations

(102)

(103)

where

(104)

and

m

= - L rf;kfc"
i=l

where

So, the equations of motion for the constrained system may be written as
SAS 3O.7-E

(105)

(106)

(107)
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(108)

where r is defined by (103) and (106), and f, is obtained from eqn (93). The state derivatives
are then calculated from eqn (l08), with the total procedure requiring approximately
O(n+m 3

) operations.

3. NUMERICAL EXAMPLES

Three examples are provided to validate the formulation and offer evidence of the
improved performance possible when using an O(n) formulation for the analysis of systems
containing a large number of bodies.

3.1. Slider-crank mechanism
The slider~rank mechanism is shown in Fig. 4. The crank A is rigid with the distance

from 0 to P being La' and moves with constant angular speed n. Connecting beam B, from
P to Q, is of uniform circular cross-section, has length Lb , and is elastic. The sliding block
C is connected to Bat Q and is constrained to motion along the x-axis only. The admissible
functions used in modeling the flexibility for B were obtained from finite element analysis
using MSC NASTRAN "cbar" beam elements. In each of the three cases considered, all
available modes were used which were associated with motion of B in the x-y plane.
Deflections are measured between the centerlines of the deformed and undeformed beam
B at its midpoint. The properties of B used in this example are:

La = 6.0 in,
Lb = 12.0 in,
Young's Modulus B = 3.0 x 107 Ibfin- 2

,

Diameter of B 0.25 in,
Mass B 0.1667 Ibm,
Mass C = 0 Ibm,
n = 125.6 rad sec-I.

The initial position of the mechanism is with P in (x, y) coordinates (0,6) and no
deformation of B.

The three cases analysed are:

Case I. B is composed of a single element,
Case 2. B is composed of two equal length elements,
Case 3. B is composed of three equal length elements.

The results are shown in Fig. 5 and agree almost perfectly with those obtained by Lee
(1988). In his work, Lee used a formulation similar to that in Singh et al. (1984) and
imposed constraints through the implementation of the method presented by Wampler
(1985).

3.2. Cantilever beam with prescribed base motion
The system analysed here consists of a cantilever beam attached to a base with

prescribed angular velocity-an example used as a benchmark test by a number of authors

G

Fig. 4. Slider-erank mechanism.
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0'15,----.,----,------,-----,---,----.,-----r----,

----- Case 1
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0.1

-0.05

-O'10~---:::0'-:::OO~5--70.01!:-;---;:0.=01-=-5--O~.02=--~O.02S=------:O~.O::-3--O;;-;.O==35:---~0.04

Time [sec.]

Fig. 5. Transverse deflection of sJider--<:rank connecting rod.

(Kane et al., 1987; Ryan, 1987; Banerjee and Dickens, 1990; Wallrapp and Schwertassek,
1991). The generalized coordinates used in this problem are the four modal coordinates
and the angular velocity of the base is given by

{

2 [ 7.5. (1tt)Jt if t < 15 sec,wet) = 5' - -;- sm 7.5

6.0 (rad sec-I) if t~ 15 sec.

(109)

The beam geometry and properties which appear in this example were those used by
Ryan (1987), as well as Wallrapp a'nd Schwertassek (1991), and are:

Beam length = 10.0 m,
Cross-sectional area = 0.0004 m2

,

Area moment of inertia = 2.0 x 10- 7 m4
,

Young's Modulus = 7.0 x 10 10 N m- 2
,

Shear modulus = 3.0x IO lo Nm- 2
,

Mass = 12 kg.

Figure 6 shows the tip deflection of the beam central axis from its undeformed position
during the course of a 20 second simulation. The results agree well with those obtained
using the formulation presented in Kane et al. (1987).

3.3. (nI2)-body chain with constr.ained ends
The system consists of a chain of rigid bodies with each end of the chain connected to

a point fixed in an inertial reference frame. The nl2 bodies of the chain are connected to
each other and to points fixed in the inertial frame by two degree of freedom Hooke's joints
(Fig. 7).

If n represents the number of degrees of freedom associated with the unconstrained
system, then the system has nl2 bodies, (nI2) +I joints, and the actual number of system
degrees of freedom is p = n - 2. The motion of the system was simulated for n = 4, 12, 20,
28, 36 and 44.
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- With Geometric Stiffening (Kane et a/. (1987»

---- With Geometric Stiffening (this paper)

0.1

0

.0.1

-0.2

';J
.!

.0.3
~

E=

-0.4

-o.S

·0.6

.0.7
0 2 4 6 8 10 12 14 16 18 20

Tip Deflection [meters]

Fig. 6. Tip deflection of rotating cantilever beam.

(A) nl2 body dosed loop

(B) nl2 body unconstrained system

~ - Body Belonging to System

• - 2 degree of freedom Hooke's joint

Fig. 7. Closed loop chain schematic.
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3S00...----.----.---,....------,---....,---.-------,---....,---.-----,
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3000

2500

I
i! 2000

J:
~ IS00

e
1000

---- BEST FIT CUBIC = 0.025n· +0.016n2 +3.472n -13.279

- BEST FIT LINEAR = 7.88n - 17.9

o EMPIR1CAL DATA

Number of Degreos of Freedom n

Fig. 8. CPU time as a function of n.

Results obtained from simulation codes produced using the O(n) algorithm presented
in this paper were verified through direct comparison with results obtained for identical
systems using simulation codes written from equations ofmotion derived using the standard
Kane's method as it is presented in Kane and Levinson (1985), producing an O(n 3

)

procedure. In this standard formulation, the constraint relations were enforced through the
technique presented by Wamper (1985).

The simulation results obtained by each of the two formulations were effectively
identical. However, as indicated in Fig. 8, the CPU times required in performing a desired
1.0 s simulation differ markedly for each of these formulations when n is large. It is readily
seen from the figure that substantial saving in computer time and associated cost are possible
when using an 0 (n) formulation relative to more conventional O(n3

) formulations.

4. CONCLUDING REMARKS

A general formulation is presented for the analysis of transient response of multibody
systems with flexible members. The method uses admissible shape functions derived from
finite element modeling of the component members and thus allows the modeling of
flexibility for general bodies. The formulation treats the general case ofcoupled large rigid
body displacements, linear elastic deformation, and includes a first order representation
geometric stiffening effects. Not addressed here are the difficulties associated with the
inclusion of additional geometric stiffening terms which further improve simulation
accuracy, or those in selecting the best set of admissible functions.

The formulation presented applies to systems involving three-dimensional motions,
which may be comprised ofany joint type which can be modeled as a series of revolute and
prismatic joints. The equations of motion produced in this manner are uncoupled in the
rigid body degrees of freedom, with coupling only existing between the flexible degrees of
freedom associated with the individual flexible bodies. Furthermore, the equations are
generated in a form which exploits the coarse grain concurrency of the mathematical model
to the maximum degree. Thus, the computer simulation code produced from this type of
formulation is particularly well suited for application to some forms ofparallel computers.
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APPENDIX: DETERMINATION OF TIME INVARIANT COEFFICIENTS

943

Summations are carried out over all repeated indices (h = 1, ... ,6; jEDist[k); I,m, n, o,p, u,V = 1,2,3;

q = 1, ... ,21; r,s, t = I, ... ,/lB') and elmn is the cyclic perturbation operator.

(AI)

where Kt i is the rth element of the row of the body k elastic stiffness matrix associated with the hth degree of
freedom of the ith grid.

.-
C)/ = L (41~i'f ~i' +"'~i'T~i')

1

.-
C~,k = L (41~i'mB'.i),

;= t

.-
C:! = L (elmnp~i4l~~imB',i +~~If::"i),

i= 1

.-
C:';f = L (elmn4l~~41~~imB'.i),

i= I

.-
C"k - ~ (e .l.k,i.l.k.imB'.i+e .1.k,iJ.k,i/B"'-'-e .1.k,iJ.k.i/B'.i+ e .1.k.iJ.k,i/s',i)

rsl - i...J ImnY'smY'rn ml,,'I'ro'l'sn om' m/n'l'rm'l'so no omn'l'ro,,"sm n/ ,
i= I

.-
C;': = L (~i't5immB'.i), t5'm = KroneckerDelta,

i= I

.-
C)~,k = L (~i'/t:,i),

;=1

.-
C);.k = L (41~N~~t5'mmB'.I+~i'¥tk;/,/ti),

i= I

.-
C:/·k = L (T~i'+elmnp~'·if::"·i),

;=1

.-
C,~4,k = L (e'mnp~',imB',i),

;= I

.-
C:,;·k = elmn L (41::'·imB'.i),

;=1

.-
C,J,::,k = L (I::;'; +8tmnGnopp:k.ip:k.imBk,i),

;=1

(A2)

(A3)

(A4)

(AS)

(A6)

(A7)

(A8)

(A9)

(AIO)

(All)

(AI2)

(AI3)

(AI4)

(AIS)

(AI6)

(AI7)

(AI8)

(AI9)

(A20)
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..
C1t~;,k = L (8Imn8nop8pvu[p~k.i.:Uk·;mBk.i +p~k·j.::/mBk.;]),

i=1

..
C]'t,k = L (elmnt/l'';'rfI:~iI::·i),

i= 1

.. ..
C;/k = L (f~/) = L (Kr,'·icIl::·i

).
;=) ;=) - -

..
C1J~k = L (etmncP~·imB'.i),

i= I

..
C;/'k = L (/B'.i"'~~+etmnp~icPt;;,'mB'.i),

;=)

..
C;}k = L (etmncP~~cP~~imB',1),

i= J

..
C~3.k = L (cP~/m"',1),

i= 1

..
C;~·k = L (etmnenoA,(cP~pip~i+cPt;;!,p;·i)m"'·i),

i= I

..
Cl'::·k = L (etont5nmp:·imB'.,),

;-1

(A21)

(A22)

(A23)

(A24)

(A25)

(A26)

(A27)

(A28)

(A29)

(A30)

(A31)

(A32)

(A33)

(A34)

(A35)

(A36)

(A37)

(A38)

(A39)

The following are all terms associated with geometric stiffness. The equations hold if the matrices f(t i and
q

Kt i represent the six rows of f('I! and KZ' , respectively, which are associated with the six degrees of freedom of
Jb - q j/I

ith grid, and in the order;

row I corresponds to rotation in local direction I, (l = 1,2,3),
row 1+3 corresponds to translation in local direction I, (I = I, 2, 3).

D I.k.t - (f("'.i +f("'.i )cIl
tim - _G(m+Jlk _G{IIt+12Jk lV'

(A40)
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D 2.1<,I_ K JI',11f>
11m - _GmID Iv'

D 3.1<,1 - (KJI',i +KB',I )If>
tim - _ G(m+ J)(/+ J}al _ G(m+ 12)(1+ J)IJ tv,

D 4.1<,1 - kB',i If>
tim - _GM(/+])ll tv'

G 3,JI' _ (.... )T~B' ....
qrJI - 'V;., ~GqtrwWsw,

I-
G:;JI' = I (cP~/D,t:'+"'~/Dlt~,i),

j"",)

I-
G;,1 = I (cP~/D?if:'I+"'~/D1t.,,).

i=J

6oB' I- 1.1<,1 k,l 3.1<J
G'lo = I (D'io +elm.PmD,.o),

I-I

7,JI' _ I- k,l 3.1<,1
G"lo - I (elm.cP""D,.o ),

i-I

I-
G~1 = I (D~:,j+elm.p~jD:t.,j).

i-I

, I-
G 'O,B _ ~ (D 3.1<,I)

tim - t. tim'
;=1

, I-
G II,B _ ~ (D 4.1<,I)

11m -t- tim'
I_I

I-
G 12,sJ = ~ (J(JI',I~ +e pk,Ij(JI',1 ~)
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-, .. ,
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i-I
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qtt '- Imn m _GIJ("+J)cI tv

i-I
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